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Abstract

The energy release rate (ERR) proposed by Irwin based on a theory by Griffith [1, 2] has been extensively used as a
fracture criterion in 2D for brittle domains. Under in-plane mixed mode loading (modes I+II), the direction of crack
initiation from cracks and sharp V-notches was determined by the orientation at which the ERR attains its maximum.

Using the newly developed asymptotic expansion presented in [3] verified by direct results from finite element
analyses we demonstrate that the ERR under mode III cannot predict the fracture initiation direction correctly. The
ERR maximum value is always obtained along the V-notch bisector, contrary to experimental observations. This
forbids the ERR to be applied as a failure initiation criterion in cases where mode III is dominant.

Keywords: Potential Energy, V-notch, failure criterion, 3D singularities

1. Introduction

Most failure initiation criteria in elastic brittle homogeneous and isotropic structures containing sharp V-notches
or cracks can be divided into two fundamental approaches: energy-based, and stress-based. One of the most ad-
dressed energy approaches utilizes the critical energy release rate (ERR) concept which proposed by Irwin based
on a theory by Griffith [1, 2]: A crack initiates in a directionalong which the ERR is maximum, and initiation
occurs when the ERR reaches a critical value considered a material property. According to the maximum stress
criterion, the failure initiation is determined by the maximum normal stress (proposed by Erdogan and Sih [4] for
isotropic materials). Failure occurs in the direction perpendicular to the maximum normal stress, and initiation will
occur when the stress intensity factor for a crack along thisdirection reaches a critical value, which is considered a
material property.

The present work focuses on the ability of the ERR criterion to predict crack initiation direction from a V-notch
under mode III loading in the context of finite fracture mechanics (examples for the FFM approach in 2D can be
found in [5, 6]). There are several experimental results available of quasi-brittle materials under loading conditions
which involve mode III. A common geometry used in these experiments is a cylindrical rod with a circumferential
notch, loaded in torsion. Examples for such experiments include Alumina [7] (Fig. 1), and PMMA [8, 9] (Fig.
2). The fracture surfaces are of complicated and segmented shapes, and individual crack initiation sites along the
original crack edge can be observed.
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Figure 1: Fracture surfaces from [7] of Alumina cylindricalspecimens under (a) pure tension, (b) pure torsion, and (c,d) different combinations
of tension and torsion.

(a) (b) (c)

Figure 2: Fracture surfaces of PMMA cylindrical specimens under pure tension (a), and pure torsion (b) from [9], and under pure torsion from
[8] (c).

For straight V-notch edges, only few experimental exampleswere documented in quasi-brittle materials where
mode III was involved. Lazarus et al. [10] have conducted experiments on a slant crack geometry under 3 point
bending. We have chosen a similar geometry of PMMA bars with slanted V-notch and loaded them to fracture under
4 point bending (see Fig. 3 (a)). The inclination angle of thenotch (γ 6= 0o) created a mixed mode I+II+III state
of stress along the V-notch front, and a segmented fracture surface (Fig. 3 (c,d)). Knauss [11] applied out-of-plane
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shear (Fig. 4 (a)) on a brittle polymer (Solithane 113) with asingle edge notch geometry and has observed multiple
crack initiation sites distributed along the original crack front, at an angle of45o with respect to the original front
(Fig. 4 (b)).

(a) (b)

(c) (d)

Figure 3: Optical fractography (stereoscope, magnification ×8) of specimen surfaces after fracture in 4PB (a) with the samenotch height and
different inclination anglesγ = 0o (b),γ = 30o - the arrows denote crack origins (c),γ = 45o (d).

(a) (b)

Figure 4: Fracture surface of a brittle polymer (Solithane 113) after arrested crack growth from [11]. View (a) is normalto the specimen surface.
The lower and lighter parts of the picture represent the original crack surface. The specimen geometry and loading are presented schematically
in (b).
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We address the ability of the ERR to predict crack initiationdirection under mode III loading. ERR is defined in
classical fracture mechanics as:G =

(

−
∂Π
∂S

)

= lim
δS→0

−
δΠ
δS

, which refers to a crack propagating from an existing crack

[1]. It can also be defined in finite fracture mechanics (FFM) as: G = −
δΠ
S

(implemented in 2D in [5, 6]) which
refers to a small butfinite crack of areaS initiating from a V-notch. We show herein that under mode IIIloading,
neither can predict the crack initiation direction observed by experiments. This is contrary to mode I+II loading, for
which both FFM ERR [12, 5] and classical ERR [13] were shown tosuccessfully predict crack initiation direction.
This observation has been made for classical ERR by Cooke andPollard [14], which have used the following relation
between the ERR and the Stress Intensity Factors (SIFs) [15]:

G(φ) = K2
I (φ)

1 − ν2

E
+K2

III(φ)
1 + ν

E
(1)

Whereφ is the twist angle of crack facets with respect to initial crack, E is Young’s modulus,ν is the Poisson
ratio andKI ,KIII are the SIFs associated with modes I and III, respectively. However, the validity of their results
is questionable since the relation between the ERR and SIFs of the form provided in (1) is obtained under the
assumption that a crack under combined loading grows along the initial crack plane [16].

Former fracture initiation criteria involving mode III loading that were based on the energy approach, [17, 10,
18, 13, 19] all involve assumptions that limit their abilityto describe a general state of crack initiation, such as in
Fig. 3 (c,d). In [18] failure initiation is described by one angle only, and the dependence of the stress intensity factor
KIII on the coordinate along the crack edge is disregarded. In Lazarus et al. [17] a mesoscopically segmented
fracture surface was represented by a macroscopic smoothlytwisting crack extension. In the initiation criterion
proposed by Lin et al. [20] for cracks under modes I+III, the faceted crack front was characterized by a single
angle of fragmentation. Crack initiation criteria under mixed modes I+III is extensively discussed in [21]. The
aforementioned crack initiation criteria available for loading conditions which involve mode III cannot be used to
characterize fracture surfaces such as observed in Fig. 3 (c,d), where the number, location and orientation of crack
origins can change locally throughout the crack edge.

In [3] we have presented an analysis for FFM ERR calculations, which applies to a local finite virtual crack
initiation from a V-notch with a straight edge and is utilized in the present work. This expansion applies for all
possible crack orientations initiating at any point along the V-notch edge except for the vertices, where the edge
intersects the free surface.We have not found FFM ERR calculations in literature for comparison. Classical ERR
calculations in the presence of mode III, available by the virtual crack extension (VCE) method [22] or the virtual
crack closure integral [23], consider crack extensions within the crack plane. The only example of local ERR
calculations known to the authors which has included mode III and has considered crack initiation out of its original
plane was presented in [24] for a square cross section bar having a quarter-circular crack under combined mode
I+III. A fundamental difference between [24] and the methodpresented in [3] is that the VCE method requires that
the base of the crack extension overlaps with the original crack front. Therefore, it is inadequate for describing a
crack initiation such as in Fig. 3 (c,d), where the crack initiation orientation has a single point of intersection with
the original notch edge (or several separate points - segmented fracture surfaces).

In the present work we show systematically that the ERR cannot predict the physical observations under dominant
mode III loading. This is demonstrated for FFM ERR, for two virtual crack geometries initiating from a straight
edge V-notched bar (section 3,3.1). We also demonstrate theinvalid use of the classical ERR for a crack that
propagates from an existing crack (section 4) and in section5, the FFM ERR is addressed for a cylindrical rod with
a circumferential V-notch under mode III loading.

2. Preliminaries and notations

The ERR in FFM is defined by− δΠ
S

, whereδΠ is the difference in the potential energy between a V-notched
domain with and without a small planar virtual crack of afinite areaS created at its tip (see Fig. 5).
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Figure 5: Considered domains forδΠ.

δΠ can be computed for any crack orientation (spatial anglesα, β) and location along the V-notch edge (z) by
[3]:

−δΠApprox = A2
1 × (

√
S)2α1+1H11 + A1A2 × (

√
S)α1+α2+1(H12 +H21) +A2

2 × (
√
S)2α2+1H22

+ A1A3 × (
√
S)α1+α3+1 × (H13 +H31) + A2A3 × (

√
S)α2+α3+1(H23 +H32) (2)

+ A2
3 × (

√
S)2α3+1H33 +H.O.T.

Or in concise form:

−δΠApprox
≅

3∑

i=1

3∑

j=1

Ai(z)Aj(z) (
√
S)αi+αj+1 Hij(α, β) (3)

WhereAi ≡ Ai(z) are the general edge stress intensity functions (GESIFs) associated with the V-notch edge at
a pointz along it (coinciding with the z axis in a Cartesian coordinate representation, see Fig. 6), and the functions
Hij(α, β) are computed and tabulated,Hij depend on the crack orientation, shape, V-notch opening angle and

material properties.Hij has units ofmm2

N , as can be derived from (3).αi are the elastic field eigenvalues associated
with each loading mode, so thatα1 andα2 correspond to mode I and II of the 2D in-plane elastic solution andα3

corresponds to an out-of-plane solution (see [3]). For a crack for exampleα1 = α2 = α3 = 1/2, whereas for a
V-notch these depend on the V-notch opening angleω (see e.g. [25]). Note that the eigenvaluesαi which appear in
the exponent of

√
S need not be confused with the angleα used to define the orientation within the termHij(α, β).

For the case of pure mode III, (3) reduces to:

−δΠApprox
≅ A2

3 (
√
S)2α3+1 H33(α, β) (4)

Figure 6: Spherical coordinates representation.
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According to the ERR approach the crack is expected to initiate along a direction(α, β) at which δΠ
S

attains its
maximum [5].

2.1. Hij ’s

In 3D we use two angles to describe the spatial orientations of a newly generated crack. These are chosen
relative to the V-notch bi-sector plane at the point of crackorigin (yz plane in Fig. 6). The angleα describes
counter-clockwise rotation around they axis, and the angleβ describes counter-clockwise rotation around thez
axis. Since the rotation byα andβ is not commutative, we define the rotation (starting from theyz plane, with
normal (100)) first byβ and then byα. Examples for several circular planes are presented in Fig.7.

(a) (b)

(c) (d) (e)

Figure 7: Circular planes obtained for variousα, β angles. Rotation byα only: α = {60o, 30o, 0o,−30o,−60o}, β = 0o (a) isometric view
and (b) top view. Rotation byβ only: α = 0o, β = {45o, 30o, 0o,−30o,−45o} from (c) isometric viw and (d) front view. (e) Rotation by
α = 60o, β = {45o,−45o}. The planes are presented within a specimen withγ = 0o. The cracks were schematically emphasized in (b) and
(d) however they represent zero thickness cracks.

6



Hij(α, β) were computed using methods in [3] for a planar crack of circular shape (crack center coincides with
the V-notch edge), and a V-notch solid angleω = 315o = 360o − opening angle (so the opening angle is45o).
For angles within the range−60o ≤ α ≤ 60o and−45o ≤ β ≤ 45o, Hij was calculated for discrete orientations
(combinations ofα, β taken in intervals). PMMA material propertiesE = 3900 MPa,ν = 0.332 were used. Based
on these results, a smooth function was chosen to describe theHij(α, β) surfaces optimally. In the present article
we concentrate on approximately pure mode III conditions and therefore present only the results forH33(α, β).

Figure 8:H33(α, β) surface approximation forE = 3900 MPa,ν = 0.332, ω = 315o and circular crack shape.

For a V-notch solid angle ofω = 315o andE = 3900 MPa, ν = 0.332 the H33 surface (Fig. 8) can be
approximated by the following function:

H33(α, β, ω = 315o) = 0.00046 − 1.07 · 10−7α2 − 1.69 · 10−7β2 + 1.96 · 10−11α4 + 1.52 · 10−11α2β2 + 3.87 · 10−11β4 (5)

+ 0.00034 exp[−α2

75
] exp[− β2

800
] +

(

0.00034 − 0.00034 exp[− β2

800
] + 9.54 · 10−8β2 − 3.87 · 10−11β4

)

· exp[− α2

0.5
]

The V-notch surfaces are traction-free, so for a V-notch angle ofω = 315o, α3 = 0.5714286 [3].

3. Crack initiation angle by maximum δΠ

S
for mode III loading

Consider for example a bar of dimensions10 × 5 × 10mm3 that contains a V-notch (Fig. 9). To obtain a
dominant mode III loading, we applied a force of20000N in the z direction on the left face, force of−20000 N
in the z direction on the right face, force of−20000 N in the x direction on the the front face and finally a force of
20000 N in the x direction on the back face. The lower face was constrained in the y direction, and the right and
left faces were constrained in the x direction.E = 3900 MPa,ν = 0.332 were used.Ai(z) extracted by the QDFM
[26] are shown in Fig. 10. One can observe thatA1, A2 are negligible compared toA3. At the center of the V-notch
A1, A2 are almost zero (three orders of magnitude smaller comparedtoA3). Therefore cracks that may initiate at the
center of the V-notch edge(z = 5 mm) are considered. Different crack orientations and sizeswere examined with a
circular crack shape. To demonstrate thatδΠApprox well representδΠ, we also computedδΠFE in two models with
identical mesh, so that the crack was defined as two separate surfaces, and in the V-notched model without the crack
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the surfaces were merged. The identical meshes ensure that the numerical errors associated with mesh away from
the crack “cancel” each other when computing

δΠFE , ΠFE
V−notch+crack −ΠFE

V −notch (6)

δΠApprox was also calculated usingH33 data from Fig. 8 and tabulated in Table 1.

Figure 9: The FE model used for the mode III loading example.

Figure 10:A1(z), A2(z), andA3(z) for the10× 5× 10 mm bar in Fig. 9 with a V-notch ofω = 315◦ under mode III loading.
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crack
orientation

crack
area
mm2

Π
FE

p → ∞

N mm

error in
energy
norm at

p=7

δΠFE N mm
from FE
models

δΠApprox

N mm

% difference
between
δΠFE and
δΠApprox

no crack -32260.79 1.17%
α = 0

o

β = 0
o 0.05 -32270.83 1.18% -10.03 -9.76 -2.7%

no crack -32261.7 1.18%
α = 0

o

β = 0
o 0.07 -32276.14 1.14% -14.43 -14.77 -2.4%

no crack -32261.72 1.16%
α = 0

o

β = 0
o 0.1 -32282.92 1.21% -21.2 -20.4 -3.8%

no crack -32261.72 1.13%
α = 30

o

β = 0
o 0.05 -32266.03 1.14% -4.3 -4.22 -1.8%

no crack -32261.74 1.19%
α = 45

o

β = 0
o 0.05 -32265.62 1.19% -3.87 -3.82 -1.24%

no crack -32261.76 1.23%
α = 45

o

β = 0
o 0.07 -32267.56 1.24% -5.8 -5.49 -5.3%

no crack -32261.74 1.19%
α = 45

o

β = 0
o 0.1 -32269.92 1.21% -8.18 -8.04 -1.7%

Table 1:δΠFE results compared toδΠApprox for the10 × 5× 10 mm V-notched bar under mode III loading

The difference betweenδΠApprox and δΠFE for the mixed mode loading is less than4%. The δΠApprox

expression was validated for a variety of crack orientations, shapes, sizes and boundary conditions.
Experimental evidence suggests that under dominant mode III as in Fig. 9, the virtual crack initiates at an angle

of about(α, β) ∼ (45o, 0o), i.e. thatδΠ will be maximal in this orientation. However,δΠFE (and the respective
δΠApprox, as well as FFM ERR) attains its maximum in the direction of the V-notch bisector(α, β) = (0o, 0o).
This result can be foreseen from the asymptotic expansion ofδΠApprox when one considers that under pure mode III
loading,δΠApprox reduces to−A2

3(z0) × (
√
S)2α3+1 ×H33 (4). For a specific locationz and choice of crack area

S, δΠApprox is determined solely byH33, and the shape ofH33(α, β) in Fig. 8 clearly shows maximum values at
(α, β) = (0o, 0o) for spatial orientations in the range−60o ≤ α ≤ 60o and−45o ≤ β ≤ 45o. This clearly indicates
that the energy release rate consideration in FFM cannot independently predict the physical observations and may
not be used independently as a criterion for failure initiation.

3.1. δΠ for different crack geometries under mode III loading

One could assume that the conclusions in the previous section are due to the FFM assumptions, i.e. are a result
of the abrupt change of crack shape from half a circle atα ∼ 0o to a circular sector atα 6= 0o. Specifically,
the abrupt change from an intersectionline between the virtual crack and the V-notch edge atα = 0o (the circle
diameter) to an intersectionpoint between them atα 6= 0o (the circle’s center). Therefore,δΠFE was examined
for a crack geometry of a medallion - a circle which has a single point of intersection between its circumference and
the V-notch edge, at any orientation. The radius of the circular crack was0.2 mm. As previously described,δΠFE

was calculated byδΠFE , ΠFE
V −notch+crack − ΠFE

V−notch where the two FE models (V-notched with and without
a crack) were meshed identically. The external geometry, loading and boundary conditions were as in Fig. 9. The
only difference is the crack orientation, as presented in Fig. 11. TheδΠFE results are summarized in Table 2.
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(a) (b)

Figure 11: ”Medallion” crack geometry at (a)(α, β) = (0o, 0o) and (b)(α, β) = (45o, 0o) orientations.

crack
orientation

crack
area
mm2

Π
FE

p → ∞

N mm

error in
energy
norm at

p=7

δΠFE N mm
from FE
models

no crack -32261.72 1.14%
-9.8

α = 0
o

β = 0
o 0.125 -32271.52 1.19%

no crack -32261.55 1.18%
-7.07

α = 45
o

β = 0
o 0.125 -32268.62 1.21%

Table 2:δΠFE results for10× 5× 10 mm V-notched bar under dominant mode III loading and “medallion” crack shape.

One notices, that also for the “medallion” crack with a single point of intersection at any angle(α, β), δΠFE

(and FFM ERR) is larger for a crack at the V-notch bisector under dominant mode III loading.

4. Classical ERR approach for mode III loading

In section 3 we have considered a bar specimen with a V-notch under dominant mode III loading (Fig. 10).δΠ
was compared for different crack orientations and sizes. The FFM ERRG = −

δΠFE

S
which refers to afinite crack

initiation from a V-notch, is maximum at the V-notch bisector orientation(α, β) = (0o, 0o), contrary to experimental
observations for dominant mode III fractures.

Using the results from Table 1 one can also calculate the classical ERR, which is defined for crack propagation
from an existing crack. Taking geometry with a smaller crackas a reference, classical ERR was calculated along the
initial crack plane (Table 3).
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crack
orientation

original
crack area

mm2

δΠFE N mm
from FE
models

δΠFE N mm
δS

mm2

G = − δΠFE

δS

N mm

α = 0
o

β = 0
o 0.05 -10.03

α = 0
o

β = 0
o 0.07 -14.43 -4.4 0.02 220

α = 0
o

β = 0
o 0.1 -21.2 -6.67 0.03 222.33

α = 45
o

β = 0
o 0.05 -3.87

α = 45
o

β = 0
o 0.07 -5.8 -1.93 0.02 96.5

α = 45
o

β = 0
o 0.1 -8.18 -2.38 0.03 79.3

Table 3: Classical ERR calculations for crack initiation from an existing crack taken as the reference (initial condition). Calculations are based
on data from Table 1.

One notices in Table 3, that the classical ERR along the V-notch bisector plane orientation(α, β) = (0o, 0o)
is larger compared with the slanted orientation(α, β) = (45o, 0o) under dominant mode III loading. These results
agree with those obtained for the FFM ERR (Table 1).

5. FFM ERR for a cylindrical rod with a circumferential V-not ch under torsion

Cylindrical rods with circumferential notch under torsionare extensively used in literature for mode III exper-
iments [8, 9, 7, 11]. These experiments have shown that the crack initiation plane under dominant mode III is
approximately at−45o to the notch bisector(α, β) ∼ (−45o, 0o). Therefore, we have calculatedδΠFE because of
a crack in the(α, β) = (0o, 0o) and(α, β) = (−45o, 0o) planes.δΠFE was obtained by (6), so for each geometry
two FE models were constructed - with and without a crack, identically meshed. The specimen’s geometry was as
presented in Fig. 12 (a) (matches one of the specimens in [8]). Force of1000 N was applied in theθ direction on
the upper face, force in the opposite direction (−1000 N in theθ direction) was applied on the lower face. PMMA
material propertiesE = 3900 MPa,ν = 0.332 were used. The cracks geometry was similar to a quarter circle (Fig.
12 (b,c)), resembling the shapes observed in the fracture surface in Fig. 2 (b,c). The results are presented in Table 4.
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(a)

(b) (c)

Figure 12: Cylindrical rod dimensions and geometry (a). Planar crack in the notch bisector plane (b) (blue crack inside grey cylinder, view of the
central region of the cylinder), planar crack in45o to the notch bisector (c).

crack
orientation

crack
areaS
mm2

Π
FE

p → ∞

N mm

error in
energy
norm at

p=7

δΠFE N mm
from FE
models

G = −
δΠFE

S
N

mm

no crack -268.304 2.08%
-0.173 0.216

α = 0
o

β = 0
o 0.8 -268.476 2.1%

no crack -268.343 2.04%
-0.109 0.137

α = −45
o

β = 0
o 0.8 -268.452 2.05%

Table 4:δΠFE results for cylindrical rod (described in Fig. 12) with circumferential notch under torsion, with and without single cracks.

One may observe that although experimental observations show crack initiation sites at approximately−45o to
the notch bisector plane,δΠFE calculations show largerδΠFE at the notch bisector than at the plane−45o to it.
Since the crack area and shape were identical at both cases, the FFM ERR is larger as well at the notch bisector. This
is again contrary to expectations since ERR is thought to be maximum at the crack initiation orientation.

For the same geometry and loading conditions, we have also examined a case in which eight cracks of the same
shape and size as before (quarter circles) are simultaneously present, at equal distances from each other. Another
example examined was of tightly located cracks, resulting in 30 cracks along the V-notch edge. These are better
approximations to the fracture surfaces in Figures 1 and 2. The same orientations as before were chosen - so that all
cracks are along the notch bisector plane or at−45o to that plane (see Fig. 13).
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(a) (b)

(c) (d)

Figure 13:8 planar cracks in the notch bisector plane (a) (blue cracks inside grey cylinder), and planar cracks at−45o to the notch bisector (b).
Tightly located 30 cracks along the sameα = 0o (c) andα = −45o (d) planes.

crack
orientation

crack
areaS
mm2

Π
FE

p → ∞

N mm

error in
energy
norm at

p=7

δΠFE N mm
from FE
models

G = −
δΠFE

S
N

mm

no crack -267.827 2.4%
-1.4 0.219

α = 0
o

β = 0
o 6.4 -269.226 2.47%

no crack -267.979 1.72%
-0.88 0.138

α = −45
o

β = 0
o 6.4 -268.864 1.8%

Table 5:δΠFE results for cylindrical rod (described in Fig. 13) with circumferential notch under torsion, with and without multiple(8) cracks.
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crack
orientation

crack
areaS
mm2

Π
FE

p → ∞

N mm

error in
energy
norm at

p=6

δΠFE N mm
from FE
models

G = − δΠFE

S

N mm

no crack -267.309 0.88%
-9.61 0.401

α = 0
o

β = 0
o 24 -276.921 4.55%

no crack -267.859 2.01%
-3.51 0.146

α = −45
o

β = 0
o 24 -271.368 2.77%

Table 6: δΠFE results for cylindrical rod (described in Fig. 13) with circumferential notch under torsion, with and without tightly located
multiple (30) cracks.

One may observe theδΠFE and therefore FFM ERR are larger at(α, β) = (0o, 0o) (notch bisector) compared
to the(α, β) = (−45o, 0o) plane, independently of the number of cracks. No mutual influence between the cracks
is observed for cracks on the(α, β) = (−45o, 0o) plane, so that the ERR remains similar for this orientation,for
both individual and multiple cracks. At the(α, β) = (0o, 0o) plane, ERR is similar for 1 and 8 cracks and increases
for the tightly located cracks (Tables 4-6). In all cases examined ERR along(0o, 0o) is larger than along(−45o, 0o),
and even more so in the example with the 30 cracks, which is theclosest representation to the fracture surface in Fig.
2.

6. Summary and conclusions

Using the newly developed asymptotic expansion presented in [3] as well as direct results from FE analyses
we showed that the direction of maximum ERR under mode III loading does not agree with experimental observa-
tions. The crack initiation orientation(α, β) ≃ (45o, 0o), as evident from the various experiments documented in
the literature and our own experiments, cannot be predictedby the maximum ERR direction which is obtained at
(α, β) = (0o, 0o). This discrepancy was shown for both FFM ERR (for crack initiation from a V-notch) and classical
ERR (for crack initiation from an existing crack). The abrupt change in crack orientation in relation to the V-notch
edge seems energetically non preferable. Therefore, both FFM and classical ERR may not be used as a criterion for
failure initiation orientation when mode III loading is involved.

Although we have presented only cracks shaped as circular sectors (assumed as the virtual crack initiators), we
have also performed several preliminary studies in which elliptical shaped initial cracks were investigated. In these
studies we observed the same trend, i.e. using the ERR criterion the crack initiation is preferred along the V-notch
bi-sector.

Thus we conclude that the ERR in either FFM or classical fracture mechanics framework is inappropriate as an
independent criterion to predict the direction at which fracture evolves under a mode III dominant load.

It is important to note that the maximum normal stress in the close vicinity of the V-notch edge, under mode III
dominant load does coincide with the crack initiation direction observed experimentally(α, β) ≃ (45o, 0o). This
result has been obtained by calculating the normal stress over a constant circular area and under a constant force:
´

σn(rp, θp) rp drp dθp, for various orientations(α, β) going through the same point located along the V-notch edge.
(rp, θp) are polar coordinates defined on each chosen plane. Out of allthe orientations examined,(α, β) for which the
result of this integral was maximum was approximately(α, β) ≃ (45o, 0o) under mode III loading. This calculation
actually provides an average normal stress, since the same area is taken for all orientations. We have also confirmed
the orientation(α, β) for which the normal stress is maximum does not change with applied force or for different
areas of integration (as long as they are kept small). This suggested alternative for determining the crack initiation
orientation will be discussed and detailed in a following paper.
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Thus, unlike the situation observed under a combined mode I+II loading, where both the ERR and maximum
stress criterion resulted in the same crack initiation direction, in a dominant mode III loading these two criteria yield
different outcomes.
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